In addition, it provides excellent elevated temperature tensile, creep and stress-rupture strengths.
Grade | 316 | 316L |
UNS Designation | S31600 | S31603 |
Carbon (C) Max. | 0.08 | 0.030* |
Manganese (Mn) Max. | 2.00 | 2.00 |
Phosphorous (P) Max. | 0.045 | 0.045 |
Sulphur (S) Max. | 0.030 | 0.030 |
Silicon (Si) Max. | 1.00 | 1.00 |
Chromium (Cr) | 16.0 – 18.0 | 16.0 – 18.0 |
Nickel (Ni) | 10.0 – 14.0 | 10.0 – 14.0 |
Molybdenum (Mo) | 2.0 – 3.0 | 2.0 – 3.0 |
Nitrogen (N) | — | — |
Iron (Fe) | Bal. | Bal. |
Other Elements | — | — |
Material | Form | Tensile Strength (ksi) | Yield Strength (ksi) | % Elongation | Hardness HB |
Alloy 316L | 316L Sheet AMS 5507 | 100 max | - | 45 | - |
Alloy 316 | 316 Sheet AMS 5524 | 75 min | 30 | 45 | 207 max |
Alloy | UNS Design | Spec. | Tensile Strength | Yield Strength | ||||||||||
psi | MPa | ksi | psi | MPa | ksi | Elongation in 2 inches (min.) % | Grain Size Req. | Max. Hardness | Modulus of Elasticity (x106 psi) | Mean Coefficient of Thermal Expansion (IN./IN./°F x 10-6) | Thermal | |||
316 | S31600 | A249, A312 | 75,000 | 515 | 75 | 30,000 | 205 | 30 | 35 | — | 90 Rb | 28.0 | 9.2 | 116 |
316L | S31603 | A270, A312 | 70,000 | 485 | 70 | 25,000 | 170 | 25 | — | — | 90 Rb | 28.0 | 9.2 | 116 |
316H | S31609 | — | — | — | — | — | — | — | — | 7 or coarser | — | — | — | — |
Alloy | UNS Designation | Werkstoff NR. | Specifications* |
316 | S31600 | 1.4401 | A269, A/SA249, A/SA312, A1016, A632, A/SA688 |
316L** | S31603 | 1.4404 | A269, A/SA249, A/SA312, A1016, A632, A/SA688 |
*Note: The specifications noted including ASTM, ASME, or other applicable authorities are correct at the time of publication. Other specifications may apply for use of these materials in different applications.
· Type 316 is more resistant to atmospheric and other mild environments than Type 304. it is resistant to dilute solutions (i.e. 1-5%) of sulfuric acid up to 120°F. However, in certain oxidizing acids, Type 316 is less resistant than Type 304.
· 316 is susceptible to carbide precipitation when exposed in the temperature range of 800° - 1500°F and therefore is susceptible to intergranular corrosion in the as-welded condition. Annealing after welding will restore corrosion resistance.
· Type316L has the same composition as Type 316 except the carbon content is held below 0.03%. Not unexpectedly, its general corrosion resistance and other properties closely correspond to those of Type 316. However, it does provide immunity to intergranular attack in the as-welded condition or with short periods of exposure in the temperature range of 800° - 1500°F. The use of 316L is recommended when exposure in the carbide precipitation range is unavoidable and where annealing after welding is not practical. However, prolonged exposure in this range may embrittle the material and make it susceptible to intergranular attack.
· The maximum temperature for scaling resistance in contnuous services is about 1650°F, and 1500°F for intermittent service.
· May be susceptible to chloride stress corrosion cracking.
· Non-hardenable; non-magnetic in the annealed condition, and slightly magnetic when cold worked.
· Improved corrosion resistance to chlorides.
· Nuclear
· Chemical Processing
· Rubber
· Plastics
· Pulp & Paper
· Pharmaceutical
· Textile
· Heat exchangers, condensers & evaporators
Tensile Strength (KSI): 70
Yield Strength (KSI): 25
KSI can be converted to MPA (Megapascals) by multiplying by 6.895.
Tel:
E-mai:
Skype: